Java
Chapter 10: Exception Handling

Slides material compiled from
Java - The Complete Reference 9t Edition

By
Herbert Schildt

Exception-Handling Fundamentals

e Exception: an abnormal condition that arises in a
code sequence at run time/ run time error

— Java exception is an object that describes an
exceptional (that is, error) condition

— When an exceptional condition arises, an object
representing that exception is created and thrown in
the method that caused the error

* Exception can be

— generated by the Java run-time system (relate to
fundamental errors that violate the rules of the Java
language)

— Manually generated (typically used to report some
error condition to the caller of a method)

Keywords for exception handling

try block contains program statements that are to be
to monitored for exceptions

— If an exception occurs within the try block, it is thrown

catch block contain statements that catch this
exception and handle it in some rational manner

— System-generated exceptions are automatically thrown by
the Java runtime system.

throw is used to manually throw an exception

throws clause is used to specify any exception that is
thrown out of a method

finally block contains code that absolutely must be
executed after a try block completes

General form of an exception-handling
block

try {

// block of code to monitor for errors
}

catch (ExceptionTypel exOb) {

// exception handler for ExceptionTypel
}

catch (ExceptionTypeZ exOb) {

// exception handler for ExceptionTypel

}

/] ...

finally {

// block of code to be executed after try block ends
}

* All exception types are subclasses

Exception Types

of the built-in class Throwable

Below Throwable are two
subclasses that partition
exceptions into two branches

— Exception class: used for
exceptional conditions that user
programs should catch

* RuntimeException etc are
subclasses of Exception

— Error class: used by the Java run-
time system to indicate errors
having to do with the run-time
environment (eg Stack overflow)

Throwable

-
-
-

.-""
e
i

Exception

RuntimeException

Error

Uncaught Exceptions

* Uncaught exception :caught by the default
handler (provided by the Java run-time system)
that

— displays a string describing the exception

— prints a stack trace from the point at which the
exception occurred

— terminates the program

java.lang.ArithmeticException: / by zero
at ExcO.main(Exc0.java:4)

Rakhi Saxena (Internet Technologies)

Using try and catch

* Exception handling benefits
— allows you to fix the error

— prevents the program from automatically terminating
class Exc2 {
public static void main(String args|[]) {

int d, a;
try { // monitor a block of code.

d = 0;

a = 42 / d;

System.out.println("This will not be printed.");
} catch (ArithmeticException e) {

// catch divide-by-zero error
System.out.println("Division by zero.");

}

System.out.println ("After catch statement.");

Rakhi Saxena (Internet Technologies)

Using try and catch

class Exc2 {
public static void main (String args|[]) {

int d, a;

try { // monitor a block of code.
d = 0;
a = 42 / d;
System.out.println("This will not be printed.");

} catch (ArithmeticException e) {

// catch divide-by-zero error

System.out.println ("Division by zero.");
}
System.out.println ("After catch statement.");
} OUTPUT
} Division by zero.
After catch statement.

Rakhi Saxena (Internet Technologies)

Another Example

// Handle an exception and move on.
import java.util.Random;
class HandleError {
public static void main (String args|[]) {
int a=0, b=0, c=0;

Random r = new Random() ;
for(int 1=0, 1i<32000,; i++) {
try A

b = r.nextInt();

c = r.nextInt();

a = 12345 / (b/c);
} catch (ArithmeticException e) {

System.out.println ("Division by zero.");
a = 0; // set a to zero and continue

}

System.out.println("a: " + a);

Rakhi Saxena (Internet Technologies)

Displaying a Description of an
Exception

 Throwable overrides the toString() method
(defined by Object) so that it returns a string
containing a description of the exception

catch (ArithmeticException e) {

System.out.println ("Exception: " + e);
a = 0; // set a to zero and continue
}
OUTPUT

Exception: java.lang.ArithmeticException: / by zero

Multiple catch Clauses

* Use when more than one exception could be
raised by a single piece of code

* When an exception is thrown, each catch
statement is inspected in order, and the first one
whose type matches that of the exception is
executed

— All others are bypassed

— execution continues after the try / catch block

* NOTE: exception subclasses must come before any of their superclasses
because a catch statement that uses a superclass will catch
exceptions of that type plus any of its subclasses

Multiple catch Clauses (Example)

class MultipleCatches {

public static void main (String args[]) {
try {
int a = args.length;
System.out.println("a = " + a);
int b = 42 / a;
int c[] = { 1 };
cl[42] = 99;
} catch(ArithmeticException e) {
System.out.println ("Divide by 0: " + e);
} catch (ArrayIndexOutOfBoundsException e) {
System.out.println ("Array index oob: " + e);

}
System.out.println ("After try/catch blocks.");

Rakhi Saxena (Internet Technologies)

12

Multiple catch Clauses (Example)

OUTPUT

C:\>java MultipleCatches

a=0

Divide by 0O: java.lang.ArithmeticException: / by zero
After try/catch blocks.

C:\>java MultipleCatches TestArg

a=1

Array index oob:
java.lang.ArraylndexOutOfBoundsException:42

After try/catch blocks.

Nested try Statements

a try statement can be inside the block of another try

Each time a try statement is entered, the context of
that exception is pushed on the stack

If an inner try statement does not have a catch handler
for a particular exception, the stack is unwound and
the next try statement’s catch handlers are inspected
for a match

This continues until one of the catch statements
succeeds, or until all of the nested try statements are
exhausted

If no catch statement matches, then the Java run-time
system will handle the exception

Nested try Statements (Example)

class NestTry {
public static void main(String args([]) {
try {
int a = args.length;
int b = 42 / a;

System.out.println("a = " + a);
try { // nested try block
if(a==1) a = a/(a-a); // one command-line arg, division by zero
if (a==2) {
int c[] = { 1 };
cl42] = 99; // two command-line args, out-of-bounds exception

}
} catch (ArrayIndexOutOfBoundsException e) {

System.out.println ("Array index out-of-bounds: " + e);

}
} catch (ArithmeticException e) {
System.out.println ("Divide by 0: " + e);

Rakhi Saxena (Internet Technologies) 15

Nested try Statements (Example)

OUTPUT

C:\>java NestTry

Divide by 0: java.lang.ArithmeticException: / by zero
C:\>java NestTry One

a=1

Divide by 0: java.lang.ArithmeticException: / by zero
C:\>java NestTry One Two

a=2

Array index out-of-bounds:
java.lang.ArraylndexOutOfBoundsException:42

throw

* To throw an exception explicitly, use the throw
statement

— flow of execution stops immediately after the throw
statement

— nearest enclosing try block is inspected to see if it has
a catch statement that matches the type of exception
and control is transferred to that statement

— No match: next enclosing try statement is inspected,
and so on

— no matching catch found in any block: default
exception handler halts the program and prints the
stack trace

throw (example)

class ThrowDemo {
static void demoproc() {
try |
throw new NullPointerException ("demo") ;
} catch(NullPointerException e) {

System.out.println ("Caught inside demoproc.");

throw e; // rethrow the exception

public static void main(String args|[]) {
try {
demoproc () ;
} catch(NullPointerException e) {
System.out.println ("Recaught: " + e);

Rakhi Saxena (Internet Technologies)

18

throw (example)

class ThrowDemo {
static void demoproc() {
try f
throw new NullPointerException ("demo") ;
} catch(NullPointerException e) {
System.out.println ("Caught inside demoproc.");
throw e; // rethrow the exception

}

public static void main(String args|[]) {
try {
demoproc () ;
} catch(NullPointerException e) {
System.out.println ("Recaught: " + e);

) OUTPUT
) Caught inside demoproc.
Recaught: java.lang.NullPointerException: demo

Rakhi Saxena (Internet Technologies) 19

throws

* |f method can cause an exception that it does
not handle

— Then method’s declaration must include a throws
clause (that lists the types of exceptions that a
method might throw)

— Necessary for all exceptions, except Error or
RuntimeException, or any of their subclasses

throws (example)

class ThrowsDemo {
static void throwOne () throws IllegalAccessException

{
System.out.println("Inside throwOne.");
throw new IllegalAccessException ("demo") ;

public static voild main(String args([]) {
try {
throwOne () ;
} catch (IllegalAccessException e) {
System.out.println ("Caught " + e);

Rakhi Saxena (Internet Technologies) 21

throws (example)

class ThrowsDemo {
static void throwOne () throws IllegalAccessException

{
System.out.println("Inside throwOne.");
throw new IllegalAccessException ("demo") ;

public static voild main(String args([]) {
try {
throwOne () ;
} catch (IllegalAccessException e) {
System.out.println ("Caught " + e);

) OUTPUT
} inside throwOne
caught java.lang.lllegalAccessException: demo

Rakhi Saxena (Internet Technologies) 22

finally

* finally creates a block of code that will be
executed after a try /catch block has completed
and before the code following the try/catch block

— finally block will execute whether or not an exception
is thrown

— If an exception is thrown, the finally block will execute
even if no catch statement matches the exception

— useful for closing file handles and freeing up any other
resources

— finally clause is optional

finally (example)

class FinallyDemo {
static void procA() {
try {

System.out.println("inside procA"); throw new RuntimeException ("demo") ;

} finally { System.out.println("procA's finally");}
}
static void procB() {
try {
System.out.println ("inside procB"); return;
} finally { System.out.println("procB's finally"); }
}
static void procC () {
try {
System.out.println("inside procC");
} finally { System.out.println("procC's finally"); }
}
public static void main (String args[]) {
try |
ProcA() ;
} catch (Exception e) {
System.out.println ("Exception caught");
}
procB () ;
procC () ;

Rakhi Saxena (Internet Technologies)

24

finally (example)

class FinallyDemo {
static void procA() {
try |
System.out.println("inside procA"); throw new RuntimeException ("demo") ;
} finally { System.out.println ("procA's finally");}
}
static void procB() {
try {
System.out.println ("inside procB"); return;

} finally { System.out.println("procB's finally"); }
: OUTPUT
static void procC() { inside procA
try { 1 £
System.out.println("inside procC"); prOCA S flna”y
} finally { System.out.println ("procC's finally"); } EXCGptKN1C3Ught
J inside procB
ublic static void main (String args[]) {]
o try | I et procB's finally
procA () ; inside procC
} catch (Exceptlonle) { | procC?sfh1aHy
System.out.println ("Exception caught");
}
procB () ;
procC () ;

Rakhi Saxena (Internet Technologies)

25

Java’s Built-in Exceptions

Java’s Unchecked RuntimeException Subclasses Defined in java.lang

Exception

Meaning

ArithmeticException

Arithmetic error, such as divide-by-zero.

ArraylndexOutOfBoundsException

Array index is out-of-bounds.

ArrayStoreException

Assignment to an array element of an incompatible
type.

ClassCastException

Invalid cast.

EnumConstantNotPresentException

An attempt is made to use an undefined
enumeration value.

NlegalArgumentException

lllegal argument used to invoke a method.

[llegalMonitorStateException

lllegal monitor operation, such as waiting on an
unlocked thread.

[llegalStateException

Environment or application is in incorrect state.

[llegal ThreadStateException

Requested operation not compatible with current
thread state.

IndexOutOfBoundsException

Some type of index is out-of-hbounds.

NegativeArraySizeException

Array created with a negative size.

NullPointerException

Invalid use of a null reference.

NumberFormatException

Invalid conversion of a string to a numeric format.

SecurityException

Attempt to violate security.

StringIndexOutOfBounds

Attempt to index outside the bounds of a string.

TypeNotPresentException

Type not found.

UnsupportedOperation Exception

An unsupported operation was encountered.

Rakhi Saxena (Internet Technologies)

26

Java’s Built-in Exceptions

Java’s Checked Exceptions Defined in java.lang

Exception

Meaning

ClassNotFoundException

Class not found.

CloneNotSupported Exception Attempt to clone an object that does not implement the

Cloneable interface.

Illegal AccessException

Access to a class 1s denied.

InstantiationException

Attempt to create an object of an abstract class or interface.

InterruptedException

One thread has been interrupted by another thread.

NoSuchFieldException

A requested field does not exist.

NoSuchMethodException

A requested method does not exist.

ReflectiveOperationException Superclass of reflection-related exceptions.

Rakhi Saxena (Internet Technologies) 27

