
Java 
Chapter 10: Exception Handling 

Slides material compiled from 
Java - The Complete Reference 9th Edition 

By 
Herbert Schildt 



Exception-Handling Fundamentals 
• Exception: an abnormal condition that arises in a 

code sequence at run time/ run time error 
– Java exception is an object that describes an 

exceptional (that is, error) condition 
– When an exceptional condition arises, an object 

representing that exception is created and thrown in 
the method that caused the error 

• Exception can be 
– generated by the Java run-time system (relate to 

fundamental errors that violate the rules of the Java 
language) 

– Manually generated (typically used to report some 
error condition to the caller of a method) 

 
Rakhi Saxena (Internet Technologies) 2 



Keywords for exception handling 
• try block  contains program statements that are to be 

to monitored for exceptions 
–  If an exception occurs within the try block, it is thrown 

• catch block contain statements  that catch this 
exception and handle it in some rational manner 
– System-generated exceptions are automatically thrown by 

the Java runtime system.  

• throw is used to manually throw an exception 

• throws clause  is used to specify any exception that is 
thrown out of a method  

• finally block  contains code that absolutely must be 
executed after a try block completes 

Rakhi Saxena (Internet Technologies) 3 



General form of an exception-handling 
block 

try { 

// block of code to monitor for errors 

} 

catch (ExceptionType1 exOb) { 

// exception handler for ExceptionType1 

} 

catch (ExceptionType2 exOb) { 

// exception handler for ExceptionType2 

} 

// ... 

finally { 

// block of code to be executed after try block ends 

} 

Rakhi Saxena (Internet Technologies) 4 



Exception Types 
• All exception types are subclasses 

of the built-in class Throwable 
• Below Throwable are two 

subclasses that partition 
exceptions into two branches 
 
– Exception class: used for 

exceptional conditions that user 
programs should catch 
• RuntimeException etc are 

subclasses of Exception 
 

– Error class: used by the Java run-
time system to indicate errors 
having to do with the run-time 
environment (eg Stack overflow) 

Rakhi Saxena (Internet Technologies) 5 



Uncaught Exceptions 
• Uncaught exception :caught by the default 

handler (provided by the Java run-time system) 
that 
– displays a string describing the exception 

– prints a stack trace from the point at which the 
exception occurred 

– terminates the program 

 

java.lang.ArithmeticException: / by zero 

at Exc0.main(Exc0.java:4) 

Rakhi Saxena (Internet Technologies) 6 



Using try and catch 
• Exception handling benefits 

– allows you to fix the error 
– prevents the program from automatically terminating 

class Exc2 { 

  public static void main(String args[]) { 

    int d, a; 

    try { // monitor a block of code. 

       d = 0; 

       a = 42 / d; 

       System.out.println("This will not be printed."); 

    } catch (ArithmeticException e) {  

         // catch divide-by-zero error 

            System.out.println("Division by zero."); 

    } 

    System.out.println("After catch statement."); 

  } 

} 

Rakhi Saxena (Internet Technologies) 7 



Using try and catch 
class Exc2 { 

  public static void main(String args[]) { 

    int d, a; 

    try { // monitor a block of code. 

       d = 0; 

       a = 42 / d; 

       System.out.println("This will not be printed."); 

    } catch (ArithmeticException e) {  

         // catch divide-by-zero error 

            System.out.println("Division by zero."); 

    } 

    System.out.println("After catch statement."); 

  } 

} 

Rakhi Saxena (Internet Technologies) 8 

OUTPUT 
Division by zero. 
After catch statement. 



Another Example 
// Handle an exception and move on. 

import java.util.Random; 

class HandleError { 

   public static void main(String args[]) { 

       int a=0, b=0, c=0; 

       Random r = new Random(); 

       for(int i=0; i<32000; i++) { 

       try { 

          b = r.nextInt(); 

          c = r.nextInt(); 

          a = 12345 / (b/c); 

       } catch (ArithmeticException e) { 

              System.out.println("Division by zero."); 

              a = 0; // set a to zero and continue 

       } 

       System.out.println("a: " + a); 

    } 

 } 

} 

Rakhi Saxena (Internet Technologies) 9 



Displaying a Description of an 
Exception 

• Throwable overrides the toString( ) method 
(defined by Object) so that it returns a string 
containing a description of the exception 
catch (ArithmeticException e) { 

System.out.println("Exception: " + e); 

    a = 0; // set a to zero and continue 

} 

Rakhi Saxena (Internet Technologies) 10 

OUTPUT 
Exception: java.lang.ArithmeticException: / by zero 



Multiple catch Clauses 

• Use when more than one exception could be 
raised by a single piece of code 

• When an exception is thrown, each catch 
statement is inspected in order, and the first one 
whose type matches that of the exception is 
executed 
– All others are bypassed 

– execution continues after the try / catch block 
• NOTE: exception subclasses must come before any of their superclasses 

because a catch statement that uses a superclass will catch 
exceptions of that type plus any of its subclasses 

Rakhi Saxena (Internet Technologies) 11 



Multiple catch Clauses (Example) 
class MultipleCatches { 

 public static void main(String args[]) { 

  try { 

    int a = args.length; 

    System.out.println("a = " + a); 

    int b = 42 / a; 

    int c[] = { 1 }; 

    c[42] = 99; 

  } catch(ArithmeticException e) { 

      System.out.println("Divide by 0: " + e); 

  } catch(ArrayIndexOutOfBoundsException e) { 

       System.out.println("Array index oob: " + e); 

  } 

  System.out.println("After try/catch blocks."); 

 } 

} 

Rakhi Saxena (Internet Technologies) 12 



Multiple catch Clauses (Example) 

OUTPUT 
 
C:\>java MultipleCatches 
a = 0 
Divide by 0: java.lang.ArithmeticException: / by zero 
After try/catch blocks. 
C:\>java MultipleCatches TestArg 
a = 1 
Array index oob: 
java.lang.ArrayIndexOutOfBoundsException:42 
After try/catch blocks. 

Rakhi Saxena (Internet Technologies) 13 



Nested try Statements 
• a try statement can be inside the block of another try 
• Each time a try statement is entered, the context of 

that exception is pushed on the stack 
• If an inner try statement does not have a catch handler 

for a particular exception, the stack is unwound and 
the next try statement’s catch handlers are inspected 
for a match 

• This continues until one of the catch statements 
succeeds, or until all of the nested try statements are 
exhausted 

• If no catch statement matches, then the Java run-time 
system will handle the exception 

Rakhi Saxena (Internet Technologies) 14 



Nested try Statements (Example) 
class NestTry { 

  public static void main(String args[]) { 

  try { 

     int a = args.length; 

     int b = 42 / a; 

     System.out.println("a = " + a); 

     try { // nested try block 

        if(a==1) a = a/(a-a); // one command-line arg, division by zero 

        if(a==2) { 

           int c[] = { 1 }; 

           c[42] = 99; // two command-line args, out-of-bounds exception 

        } 

      } catch(ArrayIndexOutOfBoundsException e) { 

            System.out.println("Array index out-of-bounds: " + e); 

      } 

   } catch(ArithmeticException e) { 

           System.out.println("Divide by 0: " + e); 

   } 

  } 

 } 

Rakhi Saxena (Internet Technologies) 15 



Nested try Statements (Example) 

Rakhi Saxena (Internet Technologies) 16 

OUTPUT 
 
C:\>java NestTry 
Divide by 0: java.lang.ArithmeticException: / by zero 
C:\>java NestTry One 
a = 1 
Divide by 0: java.lang.ArithmeticException: / by zero 
C:\>java NestTry One Two 
a = 2 
Array index out-of-bounds: 
java.lang.ArrayIndexOutOfBoundsException:42 



throw 

• To throw an exception explicitly, use the throw 
statement 
– flow of execution stops immediately after the throw 

statement 
– nearest enclosing try block is inspected to see if it has 

a catch statement that matches the type of exception 
and control is transferred to that statement 

– No match: next enclosing try statement is inspected, 
and so on 

– no matching catch found in any block:  default 
exception handler halts the program and prints the 
stack trace 

Rakhi Saxena (Internet Technologies) 17 



throw (example) 
class ThrowDemo { 

  static void demoproc() { 

   try { 

       throw new NullPointerException("demo"); 

    } catch(NullPointerException e) { 

         System.out.println("Caught inside demoproc."); 

         throw e; // rethrow the exception 

    } 

  } 

 

  public static void main(String args[]) { 

   try { 

      demoproc(); 

   } catch(NullPointerException e) { 

        System.out.println("Recaught: " + e); 

   } 

  } 

} 

Rakhi Saxena (Internet Technologies) 18 



throw (example) 
class ThrowDemo { 

  static void demoproc() { 

   try { 

       throw new NullPointerException("demo"); 

    } catch(NullPointerException e) { 

         System.out.println("Caught inside demoproc."); 

         throw e; // rethrow the exception 

    } 

  } 

  public static void main(String args[]) { 

   try { 

      demoproc(); 

   } catch(NullPointerException e) { 

        System.out.println("Recaught: " + e); 

   } 

  } 

} 

Rakhi Saxena (Internet Technologies) 19 

OUTPUT 
Caught inside demoproc. 
Recaught: java.lang.NullPointerException: demo 



throws 

• If method can cause an exception that it does 
not handle 

– Then method’s declaration must include a throws 
clause (that lists the types of exceptions that a 
method might throw) 

– Necessary for all exceptions, except  Error or 
RuntimeException, or any of their subclasses 

Rakhi Saxena (Internet Technologies) 20 



throws (example) 
class ThrowsDemo { 

static void throwOne() throws IllegalAccessException 
{ 

  System.out.println("Inside throwOne."); 

  throw new IllegalAccessException("demo"); 

} 

 

public static void main(String args[]) { 

try { 

  throwOne(); 

} catch (IllegalAccessException e) { 

  System.out.println("Caught " + e); 

} 

} 

} 

Rakhi Saxena (Internet Technologies) 21 



throws (example) 
class ThrowsDemo { 

static void throwOne() throws IllegalAccessException 
{ 

  System.out.println("Inside throwOne."); 

  throw new IllegalAccessException("demo"); 

} 

 

public static void main(String args[]) { 

try { 

  throwOne(); 

} catch (IllegalAccessException e) { 

  System.out.println("Caught " + e); 

} 

} 

} 

Rakhi Saxena (Internet Technologies) 22 

OUTPUT 
inside throwOne 
caught java.lang.IllegalAccessException: demo 



finally 

• finally creates a block of code that will be 
executed after a try /catch block has completed 
and before the code following the try/catch block 
– finally block will execute whether or not an exception 

is thrown 

– If an exception is thrown, the finally block will execute 
even if no catch statement matches the exception 

– useful for closing file handles and freeing up any other 
resources 

– finally clause is optional 

Rakhi Saxena (Internet Technologies) 23 



finally (example) 
class FinallyDemo { 

    static void procA() { 

      try { 

          System.out.println("inside procA"); throw new RuntimeException("demo"); 

      } finally { System.out.println("procA's finally");} 

    } 

    static void procB() { 

       try { 

           System.out.println("inside procB"); return; 

       } finally {  System.out.println("procB's finally"); } 

     } 

     static void procC() { 

        try { 

            System.out.println("inside procC"); 

        } finally {  System.out.println("procC's finally"); } 

      } 

      public static void main(String args[]) { 

          try { 

            procA(); 

          } catch (Exception e) { 

               System.out.println("Exception caught"); 

          } 

          procB(); 

          procC(); 

      } 

} 

Rakhi Saxena (Internet Technologies) 24 



finally (example) 
class FinallyDemo { 

    static void procA() { 

      try { 

          System.out.println("inside procA"); throw new RuntimeException("demo"); 

      } finally { System.out.println("procA's finally");} 

    } 

    static void procB() { 

       try { 

           System.out.println("inside procB"); return; 

       } finally {  System.out.println("procB's finally"); } 

     } 

     static void procC() { 

        try { 

            System.out.println("inside procC"); 

        } finally {  System.out.println("procC's finally"); } 

      } 

      public static void main(String args[]) { 

          try { 

            procA(); 

          } catch (Exception e) { 

               System.out.println("Exception caught"); 

          } 

          procB(); 

          procC(); 

      } 

} 

Rakhi Saxena (Internet Technologies) 25 

OUTPUT 
inside procA 
procA's finally 
Exception caught 
inside procB 
procB's finally 
inside procC 
procC's finally 



Java’s Built-in Exceptions 
Java’s Unchecked RuntimeException Subclasses Defined in java.lang 

Rakhi Saxena (Internet Technologies) 26 



Java’s Built-in Exceptions 
Java’s Checked Exceptions Defined in java.lang 

Rakhi Saxena (Internet Technologies) 27 


