[This question paper contains 8 printed pages.]

band La Your Roll No.

Sr. No. of Question Paper: 3071

Unique Paper Code

32357614

Name of the Paper

DSE-3 MATHEMATICAL

FINANCE

Name of the Course

: B.Sc. (Hons) Mathematics

CBCS (LOCF)

Semester

VI

Duration: 3 Hours

Maximum Marks: 75

Instructions for Candidates

- 1. Write your Roll No. on the top immediately on receipt of this question paper.
- 2. Attempt any two parts from each question.
- 3. All questions are compulsory and carry equal marks.
- 4. Use of Scientific calculator, Basic calculator and Normal distribution tables all are allowed.

- (a) Define Convexity of a bond and find the relation between the Convexity, Duration and Bond price.

 How does convexity measure sensitivity of the portfolio?
 - (b) Consider the three bonds having payments as shown in the table below. They are traded to procure a 12% yield with continuous compounding.

treis tropy to a 200 to

End of year	Bond A	Bond B	Bond C
payments			
Year 1	1000	500	0
Year 2	1000	500	0
Year 3	1000+10000	500+10000	0+10000

Determine the price and duration of each bond.

(c) Explain Forward Rates. Derive the following relation:

$$R_F = R_2 + (R_2 - R_1) \frac{T_1}{T_2 - T_1}$$

where R_F is the forward interest rate for the period between T_1 and T_2 . R_1 and R_2 are the zero rates for maturities T_1 and T_2 respectively. What happens when $R_2 > R_1$?

- 2. (a) (i) An investor sells a European call option with strike price of K and maturity T and buys a put with the same strike price and maturity.

 Describe the investor's position.
 - (ii) An investor sells a European call on a share for ₹6, the stock price is ₹45 and the strike price is ₹52. Under what circumstances will the seller of the option make a profit? Under what circumstances will the option be exercised?
 - (b) Write a short note on European put options. Explain the payoffs in different types of put option positions with the help of diagrams.
 - (c) Explain Hedging. A United States company expects to pay 1 million Euros in 3 months. Explain how the exchange rate risk can be hedged using
 - (i) A Forward Contract
 - (ii) An Option.

- 3. (a) Name the six factors that affect stock option prices. Explain any three of them.
 - (b) Derive the put-call parity for European options on a non-dividend-paying stock. Use put-call parity to derive the relationship between the gamma of a European call and the gamma of a European put on a non-dividend-paying stock.
 - (c) Find lower bound and upper bound for the price of a 1-month European put option on a non-dividend-paying stock when the stock price is ₹30, the strike price is ₹34, and the risk-free interest rate is 6% per annum? Justify your answer with no arbitrage arguments, (e^{-0.005} = 0.9950).
 - 4. (a) A stock price is currently ₹40. It is known that at the end of one month it will be either ₹42 or ₹38. The risk-free interest rate is 6% per annum with continuous compounding. Consider a portfolio consisting of one short call and A shares of the stock. What is the value of A which makes the

portfolio riskless? Using no-arbitrage arguments, find the price of a one-month European call option with a strike price of ₹39? (You can use exponential value: $e^{0.005} = 1.005$).

- (b) *A stock price is currently ₹50. Over each of the next two three-month periods it is expected to go up by 6% or down by 5%. The risk-free interest rate is 5% per annum with continuous compounding. What is the value of a six-month European call option with a strike price of ₹51? (You can use exponential value: e^{-0.0125} = 0.9876).
- (c) Consider a two-period binomial model with current stock price S₀ = ₹100, the up factor u = 1.2, the down factor d = 0.8, T = 1 year and each period being of length six months. The risk-free interest rate is 5% per annum with continuous compounding. Construct the two-period binomial tree for the stock. Find the price of an American put option with strike K = ₹104 and maturity T = 1 year, (e^{-0.025} = 0.9753)

5. (a) Given that in a risk-neutral world,

$$\ln S_T \sim \phi \left[\ln S_0 + \left(r - \frac{\sigma^2}{2} \right) T, \sigma^2 T \right],$$

where S_T is the stock price at a future time T, S_0 is the current stock price, r is the risk-free rate, σ is the volatility and $\phi(m, v)$ denotes a normal distribution with mean m and variance v. For the given strike price K, find $P(S_T > K)$, the probability that a European call option be exercised in a risk-neutral world.

- (b) Show that the Black—Scholes-Merton formulas for call and put options satisfy the put-call parity.
- (c) What is the price of a European call option on a non-dividend-paying stock when the stock price is ₹52, the strike price is ₹50, the risk-free interest rate is 12% per annum, the volatility is 30% per annum, and the time to maturity is three months?

(You can use values: ln(26/25) = 0.0392, exp(-0.03) = 0.9704)

- calculate the delta of a European call option and calculate the delta of an at-the-money 6-month European call option on a non-dividend-paying stock when the risk-free interest rate is 8% per annum and the stock price volatility is 30% per annum.
 - (b) Companies A and B have been offered the following rates per annum on a ₹10 million loan for 5 years:

	Fixed rate	Floating rate
Company A	12.0%	LIBOR+ 0.1%
Company E	3 14.5%	LIBOR + 0.9%

Company A requires a floating-rate loan; Company B requires a fixed-rate loan. Design a swap that will net a bank, acting as intermediary, 0.1% per annum and that will appear equally attractive to both companies.

(c) Find the payoff from a bull spread created using call options. Also draw the profit diagram corresponding to this trading strategy.

[This question paper contains 4 printed pages TANDHO

Your Rollang

LIBRARY

Sr. No. of Question Paper: 3182

Unique Paper Code : 32357610

Name of the Paper : DSE-4(i): Number Theory

Name of the Course : B.Sc. (H) Mathematics

Semester : VI

Duration: 3 Hours Maximum Marks: 75

Instructions for Candidates

1. Write your Roll No. on the top immediately on receipt of this question paper.

- 2. All questions are compulsory.
- 3. Attempt any two parts from each question.

1. (a) A farmer purchased 100 head of livestock for a total cost of Rs. 4000. Prices were as follow: calves, Rs.120 each; lambs, Rs.50 each; piglets, Rs.25 each. If the farmer obtained at least one animal of each type, how many of each did he buy? (6.5)

- (b) Define a complete set of residues modulo n. Verify that 0, 1, 2, 2², 2³, ..., 2⁹ form a complete set of residues modulo 11, but that 0, 1², 2², 3², ... 10² do not. (6.5)
- (c) Obtain three consecutive integers, the first of which is divisible by a square, the second by a cube, and the third by a fourth power. (6.5)
- 2. (a) State and prove Wilson's theorem. What about its converse? Justify your answer. (6.5)
 - (b) (i) Use Fermat's theorem to show that if p is an odd prime, then
 1^p + 2^p + 3^p + ··· + (p-1)^p ≡ 0 (mod p).
 - (ii) If p and q are distinct primes, prove that $p^{q-1} + q^{p-1} \equiv 1 \pmod{pq}$. (6.5)
 - (c) Define Mobius μ -function. If the integer n > 1 has the prime factorization $n = p_1^{k_1} p_2^{k_2} \cdots p_2^{k_r}$ then prove that

$$\sum_{d|n} \frac{\mu(d)}{d} = \left(1 - \frac{1}{p_1}\right) \left(1 - \frac{1}{p_2}\right) \cdots \left(1 - \frac{1}{p_r}\right). \tag{6.5}$$

3. (a) Find the highest power of 5 and the highest power of 2 in 1000! and hence find the number of zeros with which the decimal representation of 1000! terminates. (6.5)

- (b) Prove that for n > 1, the sum of the positive integers less than n and relatively prime to n is ¹/₂nφ(n) and hence find the sum of the positive integers less than 100 and relatively prime to 100.

 (6.5)
- (c) Define Euler's ϕ -function. Show that for each positive integer $n \ge 1$,

$$n = \sum_{\mathbf{d} \mid \mathbf{n}} \phi(\mathbf{d})$$

the sum being extended over all positive divisors of n. Verify this result for n=32. (6.5)

4. (a) Show that if gcd(m,n) = 1, where m > 2 and n >
2, then the integer mn has no primitive roots.
Hence deduce that 21 has no primitive roots.

(6.5)

- (b) Define primitive root of the integer n > 1. Find all the primitive roots of 25. (6.5)
- (c) State Euler's criterion to determine whether an integer a is a quadratic residue of a given prime p. Also show that 3 is a quadratic residue of 13 but a quadratic nonresidue of 17. (6.5)

- 5. (a) Show that if r is a primitive root of the prime $p \equiv 1 \pmod{4}$, then $r^{(p-1)/4}$ satisfies the quadratic congruence $x^2 + 1 \equiv 0 \pmod{p}$. (6.5)
 - (b) Obtain the solution of the quadratic congruence

$$x^2 \equiv 23 \pmod{7^2}$$
 (6.5)

(c) Let p be an odd prime and let a and b be integers that are relatively prime to p. Then prove that (ab/p) = (a/p)(b/p).

Further determine whether the congruence $x^2 \equiv -46 \pmod{17}$ is solvable. (6.5)

- 6. (a) When the RSA algorithm is based on the key (n,k) = (1537,47), what is the recovery exponent for the cryptosystem? (5)
 - (b) Decrypt the message HOZTKGH, which was produced using the linear cipher C = 3P + 7 (mod 26).
 - (c) Use the Hill's cipher

$$C_1 \equiv 5P_1 + 2P_2 \pmod{26}$$

$$C_2 \equiv 3P_1 + 4P_2 \pmod{26}$$

to encipher the message GIVE THEM TIME.

(5)

[This question paper contains 8 printed pages.]

Your Roll NOHU CO

Sr. No. of Question Paper: 3183

Unique Paper Code

32357616

Name of the Paper

: DSE-4 Linear Programming

and Applications

Name of the Course

: CBCS (LOCF) - B.Sc. (H)

Mathematics

Semester

VI

Duration: 3 Hours

Maximum Marks: 75

Instructions for Candidates

- 1. Write your Roll No. on the top immediately on receipt of this question paper.
- 2. Attempt any two parts from each questions.
- 3. All questions carry equal marks.
- 1. (a) Define a Convex Set. Show that the set S defined as:

 $S = \{(x, y) \mid y^2 \le 4x\}$ is a Convex Set.

(b) Let $x_1 = 1$, $x_2 = 2$, $x_3 = 4$ be a feasible solution to the system of equations:

$$2x_1 + 3x_2 - x_3 = 4$$
$$3x_1 - x_2 + x_3 = 5$$

Is this a basic feasible solution? If not, reduce it to two different basic feasible solutions.

(c) Consider the following linear programming problem:

Minimize
$$z = cx$$

subject to $Ax = b$, $x \ge 0$

Let $(x_B, 0)$ be a basic feasible solution with objective function value z_B corresponding to a basis B where $x_B = B^{-1}b$. By entering an a_j with $z_j - c_j > 0$ and removing a b_r subject to:

$$\frac{x_{Br}}{y_{rj}} = Min \left[\frac{x_{Bi}}{y_{ij}} : y_{ij} > 0 \right]$$

Show that we can get a new feasible solution with improved value of the objective function compared to $z_{\rm B}$.

2. (a) Using Simplex method, find the solution of the following linear programming problem:

Maximize
$$z = x_1 - 2x_2 + x_3$$

subject to $x_1 + 2x_2 + x_3 \le 12$
 $2x_1 + x_2 - x_3 \le 6$
 $x_1 - 3x_2 \ge -9$
 $x_1, x_2, x_3 \ge 0$.

(b) Using two phase method, solve the linear programming problem:

Minimize
$$z = -3x_1 + x_2$$

subject to $2x_1 + x_2 \ge 2$
 $x_1 + 3x_2 \le 3$
 $x_2 \le 4$
 $x_1, x_2 \ge 0$.

(c) Solve the following linear programming problem by Big - M method:

Maximize
$$z = 3x_1 + 2x_2 + 3x_3$$

subject to $2x_1 + x_2 + x_3 \le 2$
 $3x_1 + 4x_2 + 2x_3 \ge 8$
 $x_1, x_2, x_3 \ge 0$.

- 3. (a) Consider the following primal problem (P) and dual problem (D):
 - (P) Minimize z = cxSubject to $Ax \ge b$, $x \ge 0$
 - (D) Maximize z = wbSubject to $wA \le c$, $w \ge 0$,

If x_0 (w_0) is an optimal solution to the primal (dual) problem then there exists a feasible solution $w_0(x_0)$ to the dual (primal) such that $cx_0 = w_0b$.

(b) Use graphical method to solve the dual of the following linear programming problem:

Minimize
$$z = 6x_1 + 8x_2 + 7x_3 + 15x_4$$

Subject to $x_1 + x_3 + 3x_4 \ge 4$
 $x_2 + x_3 + x_4 \ge 3$
 $x_1, x_2, x_3, x_4 \ge 0$

Further, find an optimal solution to the given problem from optimal solution of the dual problem.

(c) Obtain the dual of the following linear programming problem:

Maximize
$$z = 10x_1 + x_2 + 2x_3$$

Subject to $x_1 + x_2 - 2x_3 \ge 10$
 $x_1 + 4x_2 - 3x_3 = 3$
 $4x_1 + x_2 + x_3 \le 20$

 $x_1 \ge$, $x_2 \le 0$, and x_3 unrestricted in sign.

4. (a) A Company has four warehouses, a, b, c and d. It is required to deliver a product from these warehouses to three customers A, B and C. The warehouses have the following amounts in stock.

Warehouse: a b c d

No. of units: 15 16 12 13

and the customer's requirements are

Customers: A B C

No. of units 18 20 18

The table below shows the costs of transporting one unit from warehouses to the customers:

* 712	а	b	C	d
A	8	9	6	3
В	6	11	5	10
С	3	8	7	9

Find the optimal schedule and minimum total transport cost.

(b) A Company is faced with the problem of assigning six different machines to six different jobs. Determine the optimal solution of the Assignment Problem with the following cost matrix:

11	å ,a ,			11 1 41	4 71	
j j	a	b	С	đ	e	f
1	9	22	58	11	19	27
2	43	78	72	50	63	48
3	41	28	91	37	45	33
4	74 *	42	27	49	39	32
5	36	11	57	22	25	18
6	3	56 /	53	c+†31.	17	28
		1	ru w con	h		,

(c) For the following cost minimization Transportation Problem, find initial basic feasible solution by using North-West comer rule, Least Cost method and Vogel's approximation method. Compare the three solutions (in terms of cost).

ı	A	В	C .	D	Supply
. 1	19	14	23	11	11
ll .	15	16	12	21	13
111	30	25	16	39	. 19
Demand	6	10	12	15	

5. (a) Define the Saddle point. The pay-off matrix of a game is given below. Find the best strategy for each player, and the value of a play of the game of A and B.

Player A

Player B					
		» II	1111	IV	V
. !	9	3	1	8	0
ji .	6	5	4	6	7
(11	2	4	3	3	8
IV	5	64	2	2	1

(b) Convert the following Game problem into a linear programming problem for Player A and Player B and solve it by Simplex method.

	Player B		
Player A	3	-2	4
	-1	4	2.

(c) Using Simplex method, solve the system of equations:

$$3x_1 + x_2 = 7$$

 $x_1 + x_2 = 3$

Also write the inverse of the matrix $\begin{bmatrix} 3 & 1 \\ 1 & 1 \end{bmatrix}$