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(a) Define limit point of a set S cR. Find the limit 
points of the following sets : 

P.T.0. 
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()) N 

(i) R 

2 

(b) Definc closcd set. Prove that the union of finite 

number of closed sets is closed set. 

(c) If A and B are non-empty bounded above subsets 

of R ans C = {x + ylx E A, y e B] then show 

that : Sup(C) = Sup (A) +t Sup(B). 

(d) Define neighborhood of a point and an open set. 

Give an example of each of the following: 

() A non-empty set which is a neighborhood 

of each of its points with the exception of 

one point. 
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(11) A non-empty set which is neither an open 

set nor a closed set. 

3 

(111) A non-empty closed set which is not an 

interval. 

(iv) A non-empty open set which is not an 

interval. 

2. (a) Test the continuity of function 

f(x)=e 
-e +e-k X #0 

0, x =0 

(b) Show that the function f defined by f(x) = x is 

uniformly continuous on [-2,2]. 

at x = 0. 

sets 1S an open set. 

(c) Prove that the union of an arbitrary family of open 

P.T.O. 
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(d) Show that every continuous function on a closed 

interval is bounded. 

3. (a) Show that a sequence cannot converge to more 

than one limit. 

(b) Show that the sequence <a,> defined by: 

a, = + 
n +1 

4 

1 

by: 

n+2 

(c) State Cauchy convergence criterion for sequences 

X, =1t-+-+ + 

1 

and hence show that the sequence <x,> defined 

3 5 7 

does not converge. 

n+n ,n converges. 

+ 
1 

2n -1 



5006 

4. 

(d) Show that every convergent scquence is bounded 

but the converse i not truc. 

(a) State Leibnitz test for convergence of an alternating 

series :i(-1)"u, 

5 

1 

and absolute convergence of the series: 

x = 1, x., = 

n and test the convergence 

1,1 1 1 

(b) Check the convergence of the following series: 

find lim,n' 

2 3 4 5 

Zn7.10.13.--(3n + 4) 
3.6.9.-3n 

3+ 

(c) Show that the sequence <x,> defined by: 

2x, -, 
2+ Xn 

X (x>0). 

, n2 is convergent. Also 

P.T.0. 
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5. 

(d) Test the convergcnce of the series whose nlh term 

is (Va+i-Va). 

(a) If <a,> and <b,> are sequences of real numbers 

such that 

lim, 

6 

n- n a, lim lim, b, = b then prove that : 

lim, (a,b,) = ab. 

(b) Define Riemann integrability of a function. Show 

(c) Show that lim,,. 

n 

that x² is integrable on any interval [0, k]. 

1, 
n 

1+22 +3* + ...+n"=l. 
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6. 

(d) Define the sum of a convergent series. Find the 

sum of the folowing series: 

of the series 

7 

1 1 

192.3 3.4 4.5 

n 

(a) Test the convergence and absolute convergence 

n 

nyn 

1 1 

a, =l, antl 

+ 

(b) Let <a,> be a sequence defined by 

(2a, +3) 
4 

n1, 

Prove that <a, 

monotonically increasing. Also find lim, a,: 

is bounded above and 

P.T.0. 
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(c) Prove that every continuous function is integrable. 

(d) Discuss the convergence of the series : 

iM: 

n=l 

Sin nX + coS nx 

n 3/2 
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(a) Let S be a non empty bounded set in R. Let 

a >0, and let aS = fas: s E S}. Prove that 

inf aS = a inf S, sup aS = a sup S. 

P.T.0. 

N2 
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(b) Define order completeness property of real 

numbers. 

2 

(c) Define limit point of a set. Show that the set N of 

natural numbers has no limit point. 

(d) State and prove Archimedean property of real 

numbers. 

(a) Show that the function defined as 

f(x)= x, if x is irrational 
-x, if x is rational 

is continuous only at x = 0. 

(b) Show that the function f defined by f(x) = x* is 

uniformly continuous on [-2,2]. 
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3. 

(c) Define an opcn sct. Prove that every open interval 

is an open set. Which of the following sets are 

open. 

() 12, ol 

3 

(ii) [3,4[ 

(d) Let A and B be bounded nonempty subsets of R, 

and let A + B = fa + b: a e A, b e B}. Prove 

that sup (A + B) = supA + supB. 

(a) Prove that every convergent sequence is bounded. 

Justify by an example that the converse is not 

true. 

P.T.0. 
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(b) Prove that the sequence (a,) defined by the 

recursion formula : 

converges to the positive root of x' - X - 7 = 0. 

(c) State Cauchy's convergence criterion for 

where 

sequences. Check whether the sequence (a,), 

1+ 

a, =V7, ant| =7+ a, 

a, =1+ 

1S conergent or not. 

2 

X 
4 

4 

4 

1 1 
++ 

5 9 

(d) Test for convergence the series : 

+ 

6 
X 

6 

+ 
1 

4n -3 
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4. (a) Prove that, if the seriesn converges, then 

lim u, =0. Show by an example that the converse 
n’o 

is not true. 

(b) Test for convergence the series 

8 

5 

2.4.6......2.n+ 2) �n-1 
n=l 3.5.7 ....... (2n +3) 

a, =, an+1= 

(c) Let (a,) be a sequence defined by: 

3+2a, 
2+an 

(x >0) 

n1. 

Show that (a,) is convergent and find its limit. 

(a) Prove that a sequence of real numbers converges 
if and only if it is a Cauchy sequence. 

P.T.0. 
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5. (a) State Leibnitz test for convergence of an alternating 

series of real numbers. Apply it, to test for 

convergence the series 

1 1 
+ 

(b) Show the sequence defined by (a)=(a) 

Cauchy sequence. 

relation, 

1 1 

6 

(c) Prove that the sequence (a,) defined by the 

converges. 

a, =1, a, =1+-+ 
1 1 

integrable. 

1! 2! 

1 

is not 

(n-1): i' (n2 2), 

(d) Prove that every continuous function is 
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6. (a) Define Riemann integrability of a bounded function 

7 

f on a bounded closed interval la, b]. Show that 

the function f defined on [a, b] as 

|0 when x is rational 

COS n 

1 when x is irrational 

is not Riemann integrable. 

(b) Test for convergence the series 

a being real. 

(c) State D'Alembert's ratio test for the convergence of a positive term series. Use it to test for 

convergence the series n! 

P.T.0. 
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(d) Show that f(x) =- is not uniformly continuous on 

[0,1]. 

8 

X 
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